- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- PCB techonology
- substrate integrated image line (SIIG)
- co-axial probe feeding
- single-layer transition
- millimeter wave devices
- short-slot coupler
- Substrate integrated waveguide (SIW)
- band-pass filters
- diplexer
- reconfigurable filter
- Optoelectronic Information Science and Engineering
- Electronic Science and Technology
- Fujikura Ltd.
- University of Electronic Science and Technology of China
- University of Alberta
- Hiroshima University
-
Effects of Substrate Preheating Temperatures on the Microstructure, Properties, and Residual Stress of 12CrNi2 Prepared by Laser Cladding Deposition Technique
摘要: The 12CrNi2 alloy steel powder studied in the present paper is mainly used to manufacture camshafts for nuclear power emergency diesel engines. Laser cladding deposition is of great signi?cance for the manufacture of nuclear power emergency diesel camshafts, which has the advantages of reducing material cost and shortening the manufacturing cycle. However, due to the extremely uneven heating of the components during the deposition process, a complex residual stress ?eld occurs, resulting in crack defects and residual deformation of the components. In the present paper, 12CrNi2 bulk specimens were prepared on the Q460E high-strength structural steel substrate at different preheating temperatures by laser cladding deposition technique, and a ?nite element residual stress analysis model was established to investigate the effects of different preheating temperatures on the microstructure, properties, and residual stress of the specimens. The results of the experiments and ?nite element simulations show that with the increase of preheating temperature, the content of martensite/bainite in the deposited layer decreases, and the ferrite content increases. The proper preheating temperature (150 ?C) has good mechanical properties. The residual stress on the surface of each specimen decreases with the increase of the preheating temperature. The longitudinal stress is greater at the rear-end deposition part, and the lateral residual stress is greater on both sides along the scanning direction.
关键词: substrate preheating,12CrNi2 alloy steel powder,residual stress,laser cladding deposition,microstructure and properties
更新于2025-11-28 14:24:20
-
Fiber Brag grating monitoring of a morphing wing based on a polyvinyl chloride reinforced silicone substrate
摘要: Here, the three-dimensional (3D) shape monitoring of polyvinyl chloride (PVC)-reinforced silicone substrate for a morphing wing is detailed, using Fiber Bragg grating (FBG) sensors. An optical ?ber FBG sensor was embedded into a soft silicone substrate, which was glued onto the surface of a PVC substrate. This substrate was aligned with the morphing wing’s ?exible ribs of the. Sensing experiments were carried out both with and without the PVC reinforced silicone substrate, and the sensitivity and repeatability of the two sensors were compared. The PVC-reinforced silicone substrate sensor was calibrated using standard curvature calibration blocks to obtain a relationship between wavelength shift and the bending curvature of the PVC-reinforced silicone substrate, and the wing shape was reconstructed at di?erent deformation states. Several wing shapes were also reconstructed using a precise visual measurement system. Comparing the FBG sensing method with this visual measurement system demonstrated the e?ectiveness of the FBG method proposed here. Its maximum error was < 3%, so it can successfully sense the shape of a PVC-reinforced silicone substrate for morphing wing. The FBG sensing method therefore has potential for applications in shape monitoring in the ?elds of soft robotics and ?exible biosensor monitoring.
关键词: PVC reinforce silicone substrate,Wing shape monitoring,Soft sensor,FBG sensing
更新于2025-11-28 14:23:57
-
Graphene-Coated Glass Substrate for Continuous Wave Laser Desorption and Atmospheric Pressure Mass Spectrometric Imaging of Live Hippocampal Tissue
摘要: Atmospheric pressure mass spectrometric (AP-MS) imaging technology combined with an inverted optical microscopic system is a powerful tool for determining the presence and spatial distributions of specific biomolecules of interest in live tissues. Efficient desorption and ionization are essential to acquire mass spectrometric (MS) information in an ambient environment. In this study, we demonstrate a new and efficient desorption process using a graphene-coated glass substrate and a continuous wave (CW) laser for high-resolution AP-MS imaging of live hippocampal tissue. We found that desorption of biomolecules in a live tissue slice was possible with the aid of a graphene-coated glass substrate and indirect application of a 532 nm CW-laser on the graphene substrate. Interestingly, the desorption efficiency of live tissue on the graphene-coated substrate was strongly dependent on the number of graphene layers. Single-layer graphene was found to be the most sensitive substrate for efficient desorption and reproducible high-resolution hippocampal tissue imaging applications. The subsequent ionization process using nonthermal plasma generated sufficient amounts of molecular ions to obtain high-resolution 2-dimensional MS images of the cornu ammonis (CA) and the dentate gyrus (DG) regions of the hippocampus. Therefore, graphene-coated substrates could be a promising platform to induce an efficient desorption process essential for highly reproducible ambient MS imaging.
关键词: Hippocampal tissue,Mass spectrometry imaging,Laser desorption,Graphene-coated substrate,Ambient mass spectrometry
更新于2025-11-25 10:30:42
-
Accidental contamination of substrates and polymer films by organic quantum emitters
摘要: We report the observation of ubiquitous contamination of dielectric substrates and polymethylmethacrylate matrices by organic molecules with optical activity in the visible spectral range. Contamination sites of individual solvent-related fluorophores in thin films of polymethylmethacrylate constitute fluorescence hotspots with quantum emission statistics and quantum yields approaching 30% at cryogenic temperatures. Our findings not only resolve prevalent puzzles in the assignment of spectral features to various nanoemitters on bare dielectric substrates or in polymer matrices, they also identify means for simple and cost-efficient realization of single-photon sources in the visible spectral range.
关键词: contamination of substrate and polymer matrix,organic fluorophores,single photon emitters,single molecule spectroscopy,Photoluminescence and fluorescence spectroscopy
更新于2025-11-25 10:30:42
-
Deposition of gold nanoparticles upon bare and indium tin oxide film coated glass based on annealing process
摘要: We presented a simple and efficient strategy for deposition of gold nanoparticles (AuNPs) upon transparent bare and indium tin oxide (ITO) film coated glass substrate using gold colloids as Au sources. The method involved two steps: embedding in polyvinyl alcohol (PVA) film and annealing at high temperature. The AuNPs deposited on solid substrate because of migration and coalescence of gold at high temperature. The optical and structural properties of the AuNPs were characterised by UV-vis absorption spectra and scanning electron microscopy. The results indicate that the surface of AuNPs upon substrate was clean as annealing at 600 °C for 0.5 h. The size of AuNPs deposited on ITO glass increased with annealing time and volume of PVA-AuNPs. Meanwhile, the localised surface plasmon resonance peak of AuNPs deposited on substrate was also gradual red-shift. In addition, the size of AuNPs deposited on ITO substrate was larger than that on bare glass. This work provides a simple, low-cost and large-scale method for fabrication of substrate-based AuNPs, which is benefit for exploiting biosensors, photonic devices and optoelectronic devices.
关键词: thermal annealing,solid substrate,Gold nanoparticles,indium tin oxide film coated glass
更新于2025-11-19 16:56:35
-
Deposition of TiO <sub/>2</sub> photocatalyst on polyethylene terephthalate or polyimide polymer films by reactive sputtering for flexible photocatalytic sheets
摘要: Polycrystalline anatase TiO2 films were deposited by rf reactive magnetron sputtering on polyethylene terephthalate (PET) or polyimide (PI) films with different buffer layers, such as SiO2 or Zn2SnOx (ZTO) between the TiO2 film and the substrate. Such TiO2/(SiO2 or ZTO)/(PET or PI) sheets with high transmittance in the visible region of light performed high photo-decomposition ability of CH3CHO under the UV irradiation of the black light centered at 352 nm. In the case of using SiO2 as the buffer layer, “nano-pore layer” was observed clearly in full area of the polymer substrates close to the buffer layers after the UV irradiation, whereas such degradation was suppressed drastically in the case of using ZTO as the buffer layer. Such photocatalytic sheets performed also photo-induced hydrophilicity by the UV irradiation, where the contact angle to pure water became around 5O under the UV irradiation. After additional deposition of SiO2 by the reactive sputtering under rather high total gas pressure of 3.0 Pa on the outermost surface of the TiO2 films, the photo-induced hydrophilicity was maintained for more than 98 days in the dark. Such 3-layerd SiO2/TiO2/ZTO on PET or PI substrates should be the promising flexible photocatalytic sheets with the retentional photo-induced hydrophilicity.
关键词: PET,TiO2,Photocatalyst,PI,Reactive Sputtering,Flexible substrate
更新于2025-11-19 16:51:07
-
Effects of ion beam etching of fused silica substrates on the laser-induced damage properties of antireflection coatings at 355?nm
摘要: Antire?ection (AR) coatings are deposited on UV grade fused silica substrates, which are cleaned in the dual ion beam sputtering device. Compared to ultrasonic and acid etching cleaning progress, ion beam etching improves the laser-induced damage threshold (LIDT) of substrates and AR coatings signi?cantly at 355 nm. Ion beam etching declines the low LIDT defects drastically and removes lots of the impurity elements (Ce, Fe, K, and Na). Roughness test shows that the AR coatings and substrates with ion beam etching are very ?at and of low roughness. Ion beam etching reduces the density of deep defect from substrates greatly. Damage morphologies show double layers delamination, which is explained via calculation of layer stress. This study will be helpful for preparation of high LIDT optical coatings.
关键词: Laser damage,AR coatings,355 nm,Substrate cleaning
更新于2025-11-14 15:19:41
-
AIP Conference Proceedings [Author(s) THE 3RD INTERNATIONAL CONFERENCE ON OPTOELECTRONIC AND NANO MATERIALS FOR ADVANCED TECHNOLOGY (icONMAT 2019) - Kerala, India (3–5 January 2019)] - Effect of substrate temperature on spray coated PEDOT:PSS thin film morphology for organic solar cell
摘要: The effect of substrate temperature on the spray coated poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS) hole transport layer (HTL) is explored in terms of morphological, electrical and photovoltaic characterization. The substrate temperature is varied in three steps 100, 150 and 200°C during the spray deposition of PEDOT: PSS thin film layer. Scanning electron microscopy (SEM) and optical microscopy images reveal that for the substrate temperatures of 100°C and 150°C, the morphology of PEDOT: PSS layer is improved and further increasing the temperature to 200°C, voids and cracks are formed in the films. These voids and cracks influence the conductivity of PEDOT: PSS layer which reduces from 4.7 for 150°C to 3.9 S/cm for 200°C. Organic solar cells (OSCs) using PTB7:PC71BM absorber layer on the spray coated PEDOT:PSS HTL show an efficiency increase from 2.34 for 100°C to 2.88% for 150°C and then decrease to 1.88% for 200°C.
关键词: substrate temperature,spray coating,PEDOT:PSS,morphology,organic solar cells
更新于2025-10-22 19:40:53
-
Influence of substrate and substrate temperature on the structural, optical and surface properties of InGaN thin films prepared by RFMS method
摘要: In this work, the pure InGaN thin films were grown using n-type and p-type silicon substrates at varying substrate temperatures using the sputtering method. The effects of substrate and substrate temperature on the structural, morphological and optical properties of the thin films grown were investigated. X-ray diffraction (XRD) analyzes of the obtained films illustrates crystal structures at C substrate temperature, the films were found to be hexagonal. Scanning electron microscopy (SEM) was used to investigate the shape, size and surface distribution of the particles formed on film surfaces. The reflection and optical band gap (Eg) of the films were investigated from the optical analyzes taken with the UV-VIS spectrophotometer. As a result of these analyzes, it has been reached that the substrate and substrate temperature have a great influence on the structural, morphological and optical properties of the films. The experimental findings obtained in the study are compared with the studies given in the literature and the similarities and differences are discussed.
关键词: InGaN growth,silicon substrate,thin films,sputtering technique,substrate temperature
更新于2025-09-23 15:23:52
-
Seed Free Growth of Aligned ZnO Nanowire Arrays on AZO Substrate
摘要: In the absence of commonly used seed layer, we can still successfully synthesized aligned ZnO nanowire arrays by the hydrothermal method. By using aluminum-doped zinc oxide (AZO) glass as a substrate, high-density and vertically aligned ZnO nanowires were synthesized directly on the substrate in the absence of the ZnO seed layer. The current-voltage curve indicated that the sample grown on AZO glass substrate in the absence of seed layer possesses better conductivity than that synthesized on FTO glass substrate with ZnO seed layer. Thus, a simplified, seed-free and low-cost experimental protocol was reported here for large-scale production of high quality ZnO nanowire arrays with promoted conductivity.
关键词: conductivity,ZnO nanowire arrays,seed layer free,AZO substrate
更新于2025-09-23 15:23:52