- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Pyrene-SH functionalized OTFT for detection of Hg2+ ions in aquatic environments
摘要: Mercury ion (Hg2+) sensor based on bottom gate top contact organic thin film transistor (OTFT) was fabricated. The OTFT channel area was functionalized with pyrene that contain thiol group, which has strong binding affinity toward Hg2+ ion. The OTFT sensor exhibited a charge mobility of 0.28 cm2 V–1 s–1, a threshold voltage of -22.3 V and on-to-off ratio 103. The sensor shows high selectivity to Hg2+ ion over other two valence metal ions. OTFT sensor exhibited high sensitivity to Hg2+ ion, indicated by increasing of drain current after exposed to different concentration of Hg2+ ion ranging from 1 mM to 0.01 μM. Moreover, the OTFT sensor capability for practical application was also demonstrated by sensing the present of 25 μM of Hg2+ ion in tap, drinking and seawater samples.
关键词: Mercury sensor,Pyrene derivative,Organic thin film transistor
更新于2025-11-14 17:28:48
-
Reduction of Bias and Light Instability of Mixed Oxide Thin-Film Transistors
摘要: Despite their potential use as pixel-switching elements in displays, the bias and light instability of mixed oxide semiconductor thin-film transistors (TFTs) still limit their application to commercial products. Lack of reproducible results due to the sensitivity of the mixed oxides to air exposure and chemical contamination during or after fabrication hinders any progress towards the achievement of stable performance. Consequently, one finds in literature several theories and mechanisms, all justified, but most of them conflict despite being on the same subject matter. In this study, we show that under an optimized fabrication process, which involves the in situ passivation of a mixed oxide semiconductor, we can reduce the bias and light instability of the mixed-oxide semiconductor TFTs by decreasing the semiconductor thickness. We achieve a negligible threshold voltage shift under negative bias combined with light illumination stress when the mixed oxide semiconductor thickness is around three nanometers. The improvement of stability in the thin mixed-oxide semiconductor TFTs is due to a reduced number of oxygen-vacancy defects in the bulk of the semiconductor, as their total number decreases with decreasing thickness. Under the optimized fabrication process, bulk, rather than interfacial defects, thus seem to be the main source of the bias and light instability in mixed oxide TFTs.
关键词: oxide,stability,thin film transistor
更新于2025-11-14 17:28:48
-
Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film
摘要: Ferroelectric/antiferroelectric thin/thick films with large positive or negative electrocaloric (EC) effects could be very useful in designing commercial refrigeration devices. Here, a giant negative EC effect (maximum ΔT ≈ ?42.5 K with ΔS ≈ ?29.3 J K?1 kg?1) comparable to the best positive EC effects reported so far is demonstrated for 0.5(Ba0.8Ca0.2)TiO3–0.5Bi(Mg0.5Ti0.5)O3 (BCT–BMT) lead-free relaxor ferroelectric thin films prepared on Pt(111)/TiOx/SiO2/Si substrates using a sol–gel method. An electric-field induced structural phase transition (nanoscale tetragonal and orthorhombic to rhombohedral) along the out-of-plane [111] direction plays a very key role in developing the giant negative EC effect. This breakthrough will pave the way for practical applications of next-generation refrigeration devices with high cooling efficiency in one cycle by ingeniously utilizing and combining both the giant negative and positive EC effects. Moreover, a large energy density of 51.7 J cm?3 with a high power density of 1.15 × 1010 W kg?1 at room temperature is also achieved in the thin film, indicating that it is also an attractive multifunctional material for energy storage.
关键词: lead-free,energy storage,electrocaloric effect,phase transition,thin film,relaxor ferroelectric
更新于2025-11-14 17:28:48
-
Preparation of high quality perovskite thin film in ambient air using ethylacetate as anti-solvent
摘要: Methylamine lead iodide (CH3NH3PbI3) perovskite thin film solar cell has attracted much attention due to its low cost and high photoelectric conversion efficiency. Preparation of high quality perovskite thin film is the key to obtain high conversion efficiency of solar cells. Here, the pinhole-free CH3NH3PbI3 layer with high coverage and smooth surface is prepared by the one-step solution method in air with ethylacetate as anti-solvent on an electron transport hybrid layer of TiO2 nanoparticles coated porous carbon. The effect of ethylacetate as anti-solvent on the quality of perovskite thin film is studied in detail by comparing with chlorobenzene and ethylether. The high saturation and humidity resistance of ethylacetate in air control the nucleation and growing kinetics of perovskite crystals during the spin coating process, which facilitates the formation of uniform pinhole-free perovskite thin films. The perovskite solar cell based on the prepared high quality thin film achieves the highest conversion efficiency of 17.41% in ambient air with a relative humidity of 35%, which is superior to the perovskite thin films prepared with chlorobenzene and ethylether (conversion efficiency of 10.80% and 10.20%). The higher light-to-electric conversion efficiency is due to high coverage of the pinhole-free perovskite thin film and good contact with the electron transport layer and the hole transport layer.
关键词: Anti-solvent,Perovskite solar cell,Uniform perovskite thin film,Ethylacetate
更新于2025-11-14 17:03:37
-
Physical properties of RF magnetron sputtered GaN/n-Si thin film: impacts of RF power
摘要: GaN thin film was successfully produced on n-Si(100) substrate by RF magnetron sputter under different RF power. Experimental measurement techniques such as UV/Vis spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and Micro-Raman Spectroscopy were used to research effects of Radio Frequency power on physical properties of produced thin film. It has been found that produced thin film was polycrystalline structure with (100) and (110) planes of hexagonal GaN from X-ray diffraction measurement result. It also proved that increasing RF power gives rise to deterioration in crystal quality of GaN thin film. Reason of this deterioration was discussed. It has been achieved that increasing RF power has resulted in decreasing optical band gap energy of GaN thin film. Reasons for these changes in optical band gap energy were explained. It was seen that some thin films were grown as layer-plus-island mode (Stranski–Krastanov growth mode) and others were grown as layer-by-layer growth mode (Frank van der Merwe mode) from AFM analysis. It has been found that increasing RF power has resulted in improvement of surface morphology of thin film from field emission scanning electron microscopy analysis. However, reaching RF power to 125 W leads to start to deteriorate of surface of GaN thin film. The reasons for this have been discussed. E1(TO) transverse optical phonon mode of hexagonal GaN with different intensity was detected from Micro-Raman Spectroscopy measurement. The reasons for this difference have been discussed. It was concluded that RF power has played a significant role in growing high quality GaN thin film. Morphological, structural, and optical properties of GaN thin film were enhanced by controlling RF power, making them a potential candidate for LED, solar cell, diode application.
关键词: Thin film,III-nitride,RF magnetron sputter,Semiconductor,GaN
更新于2025-11-14 15:25:21
-
All-Thin-Film Tandem Cells Based on Liquid Phase Crystallized Silicon and Perovskites
摘要: Combining the emerging perovskite solar cell technology with existing silicon approaches in a tandem cell design offers the possibility for new low-cost high-performance devices. In this study, the potential of liquid phase crystallized silicon (LPC-Si) solar cells as a bottom cell in an all-thin-film tandem device is investigated. By optimizing the current output of a four terminal tandem using optical simulations and state-of-the-art electrical properties of the top and bottom cells, we show that an efficiency of 23.3% can be reached, where 7.2% are attributed to the LPC-Si bottom cell. Including the potential of future developments of both sub cells, efficiencies of over 28% are estimated. Electrical and optical measurements of the bottom cell are performed by attaching a perovskite and a cutoff filter to the front side of the interdigitated back contacted LPC-Si cells. The measurements using a cutoff filter show a high impact of the filtered incident light spectrum on the open circuit voltage of the LPC-Si cell. A comparison of the simulated and measured absorptance shows that especially the optical properties of the transparent conductive oxides and recombination losses in the LPC-Si cause high current losses. Combining the measured data of the filtered LPC-Si cells and the semitransparent perovskite cells, yields a realistic estimation for the efficiency of a state-of-the-art four-terminal tandem device of 19.3%.
关键词: tandem devices,Liquid phase crystallization (LPC),perovskite solar cells,thin film photovoltaics
更新于2025-11-14 15:25:21
-
Photoelectrochemical enhancement from deposition of BiVO4 photosensitizer on different thickness layer TiO2 photoanode for water splitting application
摘要: TiO2 is a prominent photocatalyst and has been pioneering the research in water splitting for hydrogen cell production. However, TiO2 has low visible region absorption which limit its functionality as a photoabsorber and requires addition of other high absorptive material such as BiVO4. Fabrication of TiO2 photoanode on FTO substrate and deposition of BiVO4 on TiO2 were done using simple spin coating procedure. TiO2/BiVO4 photoelectrode were first tested for its photo absorption, photocurrent generation and electrical impedance to obtain the optimized sample. Optimized sample then further tested for its photocurrent generation stability using linear sweep voltammetry and time dependent photocurrent test. Photo absorption enhancement from TiO2/BiVO4 of almost 10 folds achieved along the visible region comparing to pure TiO2. Photogenerated charge produced from TiO2/BiVO4 is also 3 folds higher compared to pure TiO2at water oxidation threshold potential at 1.23 V vs. RHE. From photocurrent generation analysis, heterostructure of TiO2/BiVO4 proven to produce more than 3 folds higher photocurrent comparing to both pure TiO2 and BiVO4.
关键词: Z-scheme,Bismuth vanadate,Thin-film,Titanium dioxide,Photoelectrochemical water splitting
更新于2025-11-14 15:19:41
-
High-Mobility Inkjet-Printed Indium-Gallium-Zinc-Oxide Thin-Film Transistors Using Sr-Doped Al2O3 Gate Dielectric
摘要: In this paper, we demonstrate high-mobility inkjet-printed indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) using a solution-processed Sr-doped Al2O3 (SAO) gate dielectric. Particularly, to enhance to the electrical properties of inkjet-printed IGZO TFTs, a linear-type printing pattern was adopted for printing the IGZO channel layer. Compared to dot array printing patterns (4 × 4 and 5 × 5 dot arrays), the linear-type pattern resulted in the formation of a relatively thin and uniform IGZO channel layer. Also, to improve the subthreshold characteristics and low-voltage operation of the device, a high-k and thin (~10 nm) SAO film was used as the gate dielectric layer. Compared to the devices with SiO2 gate dielectric, the inkjet-printed IGZO TFTs with SAO gate dielectric exhibited substantially high field-effect mobility (30.7 cm2/Vs). Moreover, the subthreshold slope and total trap density of states were also significantly reduced to 0.14 V/decade and 8.4 × 1011/cm2·eV, respectively.
关键词: metal-oxide semiconductors,thin-film transistors,high-k dielectric,high mobility,inkjet printing
更新于2025-11-14 15:19:41
-
Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials
摘要: Three Zn(II) complexes of a new organic compound [(E)-4-methyl-N1-((E)-4-methyl-6-(p-tolylimino) cyclohex-3-en-1-ylidene)-N2-(p-tolyl) benzene-1, 2-diamine] (HMBD) were prepared and characterized by various techniques, including Fourier transform infrared (FTIR), UV–visible measurements, 1H-NMR, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The data revealed that the HMBD ligand has an ONS tridentate-forming structure, while the complex of HMBD with zinc metal has a distorted octahedral structure, providing sp3d2 hybridization type. The geometry, HOMO, LUMO, polarizability, and other energetic parameters were evaluated by density functional theory (DFT) on Materials Studio package. Optical band gap (Eg) was estimated by DFT theory and optical properties for [Zn(MBD)(Cl)(H2O)2].2H2O (1), [Zn(MBD)](NO3)2H2O].2H2O (2), and [Zn(MBD)(CH3COO)(H2O)].3H2O (3) thin films as well, revealing that [Zn(MBD)(CH3COO)(H2O)].3H2O (3) thin film has the smallest energy gap and can be considered a highly efficient photovoltaic material. The resulting band gap energy values from both methods were found to be close to each other. Thin films of the ligand and zinc complexes were successfully fabricated by spin coating method. The optical constants, refractive index (n), and the absorption index (k) over the spectral range of the thin films were determined.
关键词: Optical properties,Semiconductor materials,Density functional theory,Thin film,Zinc-quinonoid complexes
更新于2025-11-14 15:19:41
-
Structural, morphological and opticalproperties of spray-formed silver-doped zinc sulphide thin films
摘要: The study focused on the qualities of spray-formed Silver-doped Zinc sulphide (ZnS) thin films sprayed on soda-lime glass (slg) substrate. Silver-doped and undoped ZnS thin films with 0%, 1%, 3% and 5% Silver concentrations were deposited. The qualities of the synthesized films were investigated using x-ray diffractometry, scanning electron microscopy, Fourier transforms infrared (FTIR) spectrometry, UV-VIS spectrophotometry, Raman spectrometry and contact angle techniques. The x-ray diffraction data identified cubic structures for the thin films. Scanning electron microscopy shows the presence of agglomerates of nanoparticles and pores in the thin films. The thin films’ crystallite size ranges between 3.107 and 4.103 nm. FTIR revealed the chemical bonds in the film. The transmittance of the thin films is between 42.35 and 81.86% at 550 nm, the energy gap is observed within a range of 3.11 and 3.60 eV while the indices of refraction are in the range of 1.52 to 3.81 at 550 nm wavelength. Photoluminescence result shows Sulphur vacancies. A hydrophilic surface feature of the film was revealed by the contact angle measurement.
关键词: silver,Thin film,zinc sulphide,Raman spectrometry
更新于2025-11-14 15:16:37