- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror
摘要: The continuous wave operation of a gallium-nitride-based vertical-cavity surface-emitting laser (GaN-based VCSEL) that uses boron ion implantation for lateral current confinement and a curved mirror for lateral optical confinement was investigated. The threshold current was 0.25 mA (Jth = 3.5 kA cm?2) for a 3 μm diameter current aperture at room temperature and the lasing wavelength was 445.3 nm. This is the lowest threshold current recorded for a GaN-based VCSEL. This result is considered to be a milestone for the further miniaturization of GaN-based VCSELs by the implementation of lateral optical confinement due to the incorporation of a curved mirror.
关键词: continuous wave operation,threshold current,lateral optical confinement,GaN-based VCSEL,curved mirror
更新于2025-11-28 14:23:57
-
Repulsive magnetic field–assisted laser-induced plasma micromachining for high-quality microfabrication
摘要: Surface micro-/nanostructures are widely used in the fabrication of various functional microsystems. Laser-induced plasma micromachining can greatly improve surface quality in terms of recast layers and thermal defects compared with laser direct writing. Magnetic field has the ability to constrain plasma diffusion and can ensure the stability of laser-induced plasma processing. This paper compares the effects of laser direct–writing processing and laser-induced plasma processing of single-crystal silicon at the micro-/nanoscale, and emphatically analyzes the material removal mechanism of repulsive magnetic field–assisted laser-induced plasma micromachining. It is shown that the volume of the laser-induced plasma was constrained under the influence of Lorentz force, a high-quality smooth microgroove without thermal defects was obtained, and its line width was reduced by 30%.
关键词: Laser-induced plasma micromachining,Magnetic confinement,Thermal defects,Micro-/nanofabrication
更新于2025-11-21 11:24:58
-
2D Photonic Crystal Nanodisk Array as Electron Transport Layer for Highly Efficient Perovskite Solar Cells
摘要: Perovskite solar cells (PSCs) are currently exhibiting reproducible high efficiency; the manufacturing of low cost, scalable electron transport layers (ETLs) is becoming increasingly important. However, this remains a challenge for electron transport layers that exhibit excellent optical/electrical properties while being a thin film of simple morphology. Here we demonstrate the PSC of a 2D photonic crystal nanodisk (ND) array ETL that is compact, but greatly enhances light harvesting. The ND array is fabricated by nanosphere lithography using a monolayer of self-assembled polymer spheres as a physical mask. We fabricate ND arrays of various lattice constants simply by controlling the size of the polymer spheres. Optimal ND arrays exhibit strong forward scattering and optical confinement effects, greatly improving light harvesting in the perovskite layer. We also observe that the ND array improves charge transport by reducing contact resistance with the perovskite layer. ND array ETL PSCs reach 19% maximum power conversion efficiency, with low photocurrent-voltage hysteresis and stable photocurrent output.
关键词: optical confinement,2D photonic crystals,nanodisk array,electron transport layer,perovskite solar cells,forward scattering
更新于2025-11-19 16:46:39
-
Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light
摘要: A strategy of intensifying the visible light harvesting ability of anatase TiO2 hollow spheres (HSs) was developed, in which both sides of TiO2 HSs were utilised for stabilising Au nanoparticles (NPs) through the sacrificial templating method and convex surface-induced confinement. The composite structure of single Au NP yolk-TiO2 shell-Au NPs, denoted as Au@Au(TiO2, was rendered and confirmed by the transmission electron microscopy analysis. Au@Au(TiO2 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light reference materials such as surpassing that of other Au(TiO2 by 77% and Au@P25 by 52%, respectively, in phenol degradation.
关键词: confinement,photocatalytic degradation,visible light,TiO2 hollow spheres,plasmonic Au nanoparticles
更新于2025-11-14 17:04:02
-
S, N co-doped graphene quantum dots-induced ascorbic acid fluorescent sensor: Design, characterization and performance
摘要: In this work, new detection route for ascorbic acid was designed. First, highly luminescent sulfur and nitrogen doped graphene quantum dots (S,N-GQDs) were prepared via simple hydrothermal method using citric acid and thiourea as the C, N and S sources respectively. The prepared S,N-GQDs are characterized by XRD, HRTEM, FTIR, EDS and PL. Investigations showed that prepared S,N-GQDs have a good photostability and excitation-dependent emission fluorescence. Prepared S,N-GQDs showed maximum excitation wavelength and emission wavelength at 400 and 462nm, respectively. In the following, prepared S,N-GQDs were applied as a photoluminescence probe for detection of ascorbic acid (AA). The designed sensor was based on “off-on” detection mode. The developed sensor had a linear response to AA over a concentration range of 10-500μM with a detection limit of 1.2μM. The regression equation is Y = 0.0014 X+1.2036, where Y and X denote the fluorescence peak intensity and AA concentration, respectively.
关键词: Graphene quantum dots,Quantum confinement,Fluorescence sensor,Nanostructures,Water-soluble vitamin,Quenching
更新于2025-11-14 15:32:45
-
Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays
摘要: High photoluminescence quantum yield (PLQY) is required to reach optimal performance in solar cells, lasers and light-emitting diodes (LEDs). Typically, PLQY can be increased by improving the material quality to reduce the non-radiative recombination rate. It is in principle equally effective to improve the optical design by nanostructuring a material to increase light out-coupling efficiency and introduce quantum confinement, both of which can increase the radiative recombination rate. However, increased surface recombination typically minimizes nanostructure gains in PLQY. Here a template guided vapor phase growth of CH3NH3PbI3 (MAPbI3) nanowire (NW) arrays with unprecedented control of NW diameter from the bulk (250 nm) to the quantum confined regime (5.7 nm) is demonstrated, while simultaneously providing a low surface recombination velocity of 18 cm s-1. This enables a 56-fold increase in the internal PLQY, from 0.81 % to 45.1 %, and a 2.3-fold increase in light out-coupling efficiency to increase the external PLQY by a factor of 130, from 0.33 % up to 42.6 %, exclusively using nanophotonic design.
关键词: light out-coupling,photoluminescence quantum yield,quantum confinement,perovskite,photodetector
更新于2025-11-14 15:28:36
-
Crystalline Semiconductor Boron Quantum Dots
摘要: Zero-dimensional boron structures have always been the focus of theoretical research owing to its abundant phase structures and special properties. Boron clusters have been reported extensively by combining structure searching theories and photoelectron spectroscopy experiments, however, crystalline boron quantum dots (BQDs) have rarely been reported. Here we report the preparation of large-scale and uniform crystalline semiconductor BQDs from the expanded bulk boron powders via a facile and efficient probe ultrasonic approach in acetonitrile solution. The obtained BQDs have 2.46 nm in an average lateral size and 2.81 nm in thickness. Optical measurements demonstrate that strong quantum confinement effect occurs in the BQDs, implying the increase of the bandgap from 1.80 eV for the corresponding bulk to 2.46 eV for the BQDs. By injecting the BQDs into polyvinylpyrrolidone as an active layer, a BQDs-based memory device is fabricated which shows a rewriteable nonvolatile memory effect with a low transition voltage of down to 0.5 V and a high ON/OFF switching ratio of 103 as well as a good stability.
关键词: ultrasound,quantum dots,nonvolatile memory device,quantum confinement effect,boron
更新于2025-11-14 15:23:50
-
Quantum and Dielectric Confinement Effects in Lower-Dimensional Hybrid Perovskite Semiconductors
摘要: Hybrid halide perovskites are now superstar materials leading the field of low-cost thin film photovoltaics technologies. Following the surge for more efficient and stable 3D bulk alloys, multilayered halide perovskites and colloidal perovskite nanostructures appeared in 2016 as viable alternative solutions to this challenge, largely exceeding the original proof of concept made in 2009 and 2014, respectively. This triggered renewed interest in lower-dimensional hybrid halide perovskites and at the same time increasingly more numerous and differentiated applications. The present paper is a review of the past and present literature on both colloidal nanostructures and multilayered compounds, emphasizing that availability of accurate structural information is of dramatic importance to reach a fair understanding of quantum and dielectric confinement effects. Layered halide perovskites occupy a special place in the history of halide perovskites, with a large number of seminal papers in the 1980s and 1990s. In recent years, the rationalization of structure–properties relationship has greatly benefited from new theoretical approaches dedicated to their electronic structures and optoelectronic properties, as well as a growing number of contributions based on modern experimental techniques. This is a necessary step to provide in-depth tools to decipher their extensive chemical engineering possibilities which surpass the ones of their 3D bulk counterparts. Comparisons to classical semiconductor nanostructures and 2D van der Waals heterostructures are also stressed. Since 2015, colloidal nanostructures have undergone a quick development for applications based on light emission. Although intensively studied in the last two years by various spectroscopy techniques, the description of quantum and dielectric confinement effects on their optoelectronic properties is still in its infancy.
关键词: quantum confinement,multilayered perovskites,structural engineering,colloidal nanostructures,hybrid halide perovskites,optoelectronic properties,2D materials,dielectric confinement
更新于2025-09-23 15:23:52
-
Fabrication of Large Area Sub-200 nm Conducting Electrode Arrays by Self-Confinement of Spincoated Metal Nanoparticle Inks
摘要: Here, the fabrication of sub-200 nm metal wires from commercial silver inks with 50 nm particle size, 100 times narrower than with typical low-resolution ink-jet and screen printing in flexible electronics, is demonstrated. Using a combination of spincoating on prepatterned polymer substrates and flash lamp annealing, nanoparticles merge to wires featuring good electrical conductivity. With this method less than 150 nm thin wires can be generated from 2 μm wide or smaller V-grooves due to adapted dilution of particle content, self-confinement in V-grooves, shrinkage of line width during solvent evaporation, and sintering. After nanoimprinting, grooves made from PMMA are smoothened out by thermal reflow without affecting the wires. The resistivity of 300 μm long, 400 nm wires is similar to more conventional ink-jet printed wires with 10–50 μm widths.
关键词: self-confinement,V-groove,flash lamp annealing,nanoimprint lithography,silver nanoparticles
更新于2025-09-23 15:23:52
-
Alternative Type 2D-3D Lead Halide Perovskite with Inorganic Sodium Ions as Spacer for High Performance Light Emitting Diodes
摘要: Two-dimensional (2D) lead halide perovskites with long-chain ammonium halides display high photoluminescence quantum yield (PLQY), due to their size and dielectric confinement, which promise a high efficiency and low-cost light emitting diode (LED). However, the presence of insulating organic long-chain spacer cation (L) dramatically deteriorates the charge transport properties along the out-of-plane nanoplatelet direction or adjacent nanocrystals, which would limit the LED device performance. In order to overcome this issue, we successfully incorporate small alkaline ions such as sodium (Na+) to replace long organic molecule. Grazing incident X-ray diffraction (GIXRD) measurements verify the 2D layered formation with preferential crystallite orientation. In addition, the incorporated sodium salt also generates amorphous sodium lead bromide (NaPbBr3) in perovskite as spacers to form nanocrystal-like halide perovskite film. PLQY is dramatically improved in the sodium incorporated film associating with enhanced PL lifetime. With incorporating small concentration of an organic additive, this 2D-3D perovskite can achieve a compact and uniform film. Therefore, a 2D-3D perovskite achieves a high external quantum efficiency (EQE) of 15.9% with good operational stability. Our work develops a type of 2D-3D halide perovskite with various inorganic ions as spacers for high performance of promising optoelectronic devices.
关键词: two-dimensional,alkaline halide,perovskite,dielectric confinement,light-emitting diode
更新于2025-09-23 15:23:52