修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Fully automated detection of retinal disorders by image-based deep learning

DOI:10.1007/s00417-018-04224-8 期刊:Graefe's Archive for Clinical and Experimental Ophthalmology 出版年份:2019 更新时间:2025-09-23 15:22:29
摘要: Purpose With the aging population and the global diabetes epidemic, the prevalence of age-related macular degeneration (AMD) and diabetic macular edema (DME) diseases which are the leading causes of blindness is further increasing. Intravitreal injections with anti-vascular endothelial growth factor (anti-VEGF) medications are the standard of care for their indications. Optical coherence tomography (OCT), as a noninvasive imaging modality, plays a major part in guiding the administration of anti-VEGF therapy by providing detailed cross-sectional scans of the retina pathology. Fully automating OCT image detection can significantly decrease the tedious clinician labor and obtain a faithful pre-diagnosis from the analysis of the structural elements of the retina. Thereby, we explore the use of deep transfer learning method based on the visual geometry group 16 (VGG-16) network for classifying AMD and DME in OCT images accurately and automatically. Method A total of 207,130 retinal OCT images between 2013 and 2017 were selected from retrospective cohorts of 5319 adult patients from the Shiley Eye Institute of the University of California San Diego, the California Retinal Research Foundation, Medical Center Ophthalmology Associates, the Shanghai First People’s Hospital, and the Beijing Tongren Eye Center, with 109,312 images (37,456 with choroidal neovascularization, 11,599 with diabetic macular edema, 8867 with drusen, and 51,390 normal) for the experiment. After images preprocessing, 1000 images (250 images from each category) from 633 patients were selected as validation dataset while the rest images from another 4686 patients were used as training dataset. We used deep transfer learning method to fine-tune the VGG-16 network pre-trained on the ImageNet dataset, and evaluated its performance on the validation dataset. Then, prediction accuracy, sensitivity, specificity, and receiver-operating characteristic (ROC) were calculated. Results Experimental results proved that the proposed approach had manifested superior performance in retinal OCT images detection, which achieved a prediction accuracy of 98.6%, with a sensitivity of 97.8%, a specificity of 99.4%, and introduced an area under the ROC curve of 100%. Conclusion Deep transfer learning method based on the VGG-16 network shows significant effectiveness on classification of retinal OCT images with a relatively small dataset, which can provide assistant support for medical decision-making. Moreover, the performance of the proposed approach is comparable to that of human experts with significant clinical experience. Thereby, it will find promising applications in an automatic diagnosis and classification of common retinal diseases.
作者: Feng Li,Hua Chen,Zheng Liu,Xuedian Zhang,Zhizheng Wu
AI智能分析
纠错
研究概述 实验方案 设备清单

To explore the use of deep transfer learning based on the VGG-16 network for accurately and automatically classifying age-related macular degeneration (AMD) and diabetic macular edema (DME) in optical coherence tomography (OCT) images to assist in medical diagnosis and reduce clinician workload.

The deep transfer learning method based on the VGG-16 network demonstrates high effectiveness in classifying retinal OCT images with a small dataset, achieving accuracy comparable to human experts. It provides a fully automated approach for pre-diagnosis, reducing clinician workload and offering potential applications in clinics for assisting diagnostic decisions. Future work should focus on translating this approach into practical software for medical use.

The pre-trained VGG-16 network cannot offer transparent interpretations of results, limiting its use for treatment instructions without clinical support. Performance is slightly inferior to training a CNN from scratch with a large dataset, which is difficult due to data collection challenges and longer training times.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Fully automated detection of retinal disorders by image-based deep learning”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期